Exercise 1.1.6

Newton asked the question, what is the curve which, when revolved about an axis, gives a surface offering the least resistance to motion through a "rare" fluid (e.g. air)? Newton's answer is the following curve (see Chapter 7).

$$
(x(t), y(t))=\left(\frac{\lambda}{2}\left[\frac{1}{t}+2 t+t^{3}\right], \frac{\lambda}{2}\left[\ln \left(\frac{1}{t}\right)+t^{2}+\frac{3}{4} t^{4}\right]-\frac{7}{8} \lambda\right),
$$

where λ is a positive constant and $x \geq 2 \lambda$. Graph this curve and compute its velocity and acceleration vectors. What angle does the curve make with the x-axis at the intersection point $(2 \lambda, 0)$?

Solution

Setting $\lambda=1$, the graph of this curve in the $x y$-plane is shown below.

Figure 1: Plot of $\alpha(t)=(x(t), y(t))$ for $t \in(0,2]$.
If this curve is revolved about the y-axis, the resulting surface is shown below.

Figure 2: 3D Revolution Plot of $\alpha(t)=(x(t), y(t))$ for $t \in(0,3]$.
Since $\alpha(t)=(x(t), y(t))$ is a curve in \mathbb{R}^{2}, its velocity and acceleration vectors are given by $\alpha^{\prime}(t)$ and $\alpha^{\prime \prime}(t)$, respectively.

$$
\begin{aligned}
\alpha^{\prime}(t) & =\left(\frac{d}{d t} x(t), \frac{d}{d t} y(t)\right) \\
\alpha^{\prime \prime}(t) & =\left(\frac{d^{2}}{d t^{2}} x(t), \frac{d^{2}}{d t^{2}} y(t)\right)
\end{aligned}
$$

Differentiating both components of $\alpha(t)$ with respect to t, we get

$$
\alpha^{\prime}(t)=\left(\frac{\lambda}{2}\left(-\frac{1}{t^{2}}+2+3 t^{2}\right), \frac{\lambda}{2}\left(-\frac{1}{t}+2 t+3 t^{3}\right)\right) .
$$

Differentiating both components of $\alpha^{\prime}(t)$ with respect to t, we get

$$
\alpha^{\prime \prime}(t)=\left(\lambda\left(\frac{1}{t^{3}}+3 t\right), \frac{\lambda}{2}\left(\frac{1}{t^{2}}+2+9 t^{2}\right)\right) .
$$

In order to find the angle the curve makes with the x-axis, we have to find $d y / d x$ at the given point. The slope is equal to $\tan \theta$, and θ is exactly what we need to solve for.

$$
\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{\frac{\lambda}{2}\left(-\frac{1}{t^{2}}+2+3 t^{2}\right)}{\frac{\lambda}{2}\left(-\frac{1}{t}+2 t+3 t^{3}\right)}=\frac{1}{t}
$$

Now we need to figure out what value of t gives $\alpha(t)=(2 \lambda, 0)$. By inspection we see that $t=1$ gives this result. Plugging this value of t into the formula for $d y / d x$ gives

$$
\left.\frac{d y}{d x}\right|_{t=1}=1=\tan \theta
$$

The value of θ that gives $\tan \theta=1$ is $\theta=\pi / 4$. Therefore, the angle the curve makes with the x-axis at $(2 \lambda, 0)$ is $\pi / 4$ radians.

